Minimization of a sparsity promoting criterion for the recovery of complex-valued signals

نویسندگان

  • Lotfi Chaâri
  • Jean-Christophe Pesquet
  • Amel Benazza-Benyahia
  • Philippe Ciuciu
چکیده

Ill-conditioned inverse problems are often encountered in signal/image processing. In this respect, convex objective functions including a sparsity promoting penalty term can be used. However, most of the existing optimization algorithms were developed for real-valued signals. In this paper, we are interested in complex-valued data. More precisely, we consider a class of penalty functions for which the associated regularized minimization problem can be solved numerically by a forward-backward algorithm. Functions within this class can be used to promote the sparsity of the solution. An application to parallel Magnetic Resonance Imaging (pMRI) reconstruction where complex-valued images are reconstructed is considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Sufficient Condition for Sparsity Pattern Recovery

Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...

متن کامل

On recovery of block-sparse signals via mixed l2/lq (0 < q ¿ 1) norm minimization

Compressed sensing (CS) states that a sparse signal can exactly be recovered from very few linear measurements. While in many applications, real-world signals also exhibit additional structures aside from standard sparsity. The typical example is the so-called block-sparse signals whose non-zero coefficients occur in a few blocks. In this article, we investigate the mixed l2/lq(0 < q ≤ 1) norm ...

متن کامل

Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints

Vector valued data appearing in concrete applications often possess sparse expansions with respect to a preassigned frame for each vector component individually. Additionally, different components may also exhibit common sparsity patterns. Recently, there were introduced sparsity measures that take into account such joint sparsity patterns, promoting coupling of non-vanishing components. These ...

متن کامل

Direction of Arrival Estimation for MIMO Radar via Unitary Nuclear Norm Minimization

In this paper, we consider the direction of arrival (DOA) estimation issue of noncircular (NC) source in multiple-input multiple-output (MIMO) radar and propose a novel unitary nuclear norm minimization (UNNM) algorithm. In the proposed method, the noncircular properties of signals are used to double the virtual array aperture, and the real-valued data are obtained by utilizing unitary transfor...

متن کامل

Sparse Signal Recovery via Generalized Entropy Functions Minimization

Compressive sensing relies on the sparse prior imposed on the signal to solve the ill-posed recovery problem in an under-determined linear system. The objective function that enforces the sparse prior information should be both effective and easily optimizable. Motivated by the entropy concept from information theory, in this paper we propose the generalized Shannon entropy function and Rényi e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009